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The problem of the harmonic oscillations on the surface of an elastic layered 
medium by two circular stamps of radii a1 and a, is considered. The spacing 

between the centers of the stamps is b > a1 + a,. It is assumed that there is no 

friction in the area of contact. 

By using a method developed in [l], the Initial system is reduced to a system 

of Fredholm equations of the second kind, for whose solution approximate me- 
thods are proposed. On the basis of the results obtained, an applied theory for the 

vibrations of two stamps can be constructed which also takes account of the dis- 

persion properties of the medium, in contrast to all other known applied theo- 

ries. 
It is simple to investigate the case of vibrations of a system of n stamps by 

the method elucidated in this paper, however, we limit ourselves to the case of 

two stamps for the sake of brevity. 

1. betting a’, and Qa , respectively, denote the domains occupied by stamps of ra- 
dii a, and aa, we represent the integral equations of the problem as 

ss k (f, P, cp, 9) 41 (P, 9) PIP @ + (I. I) 
nt 

ss k (r, P, cp, 21) ~a (P, 9) PdP d$ = fr (r, cp) 
a, 

r, cpEQk, k=i, 2 

k (r, P, cp, 9) = 1 K(U) Ja (uR) r.& R = vrs-l- Pa--2rP co@~ - 9) 
r 

Here Re q&(lPf are the contact stresses under the stamps vibrating according to the law 
cos ot, and Re frre-iUt are the displacements of points at the bottom of the stamps, 

where k = 1 (k = 2) in the case of the stamp of radius a, (of radius us). 

If the medium is a system of layers lying on an elastic half-space, then the function 
K (u) is an even analytic function in the complex plane which has single real poles, 

where the positive ones will be denoted by & (k = 1, 2, . , . , n) and the branch points 
&A, and &AZ. The branch points are connected to infinity by slits in the first and 

third quadrants. The conditions of wave radiation in the medium reduce to the require- 

ment that the contour I’ be in the fourth quadrant with origin at zero and terminus at 
the point 00 - i0. Let us note that the function K (u) depends on all the geometric 
and mechanical characteristics of the layers and the half-space as well as on the fre- 

quency W of stamp vibration. 
The following is valid 
Theorem 1 (uniqueness). Let the function K (u) be real on a segment con- 
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taining the poles 2;, from which the residues are of the same sign ; let the imaginary part 
Of the function K (U) have the same sign on some segment of the real axis, and not change 

to its opposite. Then (1.1) cannot have more than one solution in the class J!& (p > 1). 
The method of proving the theorem is an incidental modification of that elucidated 

in [2] and is not presented here for the sake of brevity, 

2. Let US expand the right sides fk and the unknown functions qk in Fourier series of 
the form 

fr (r, (P) = ,=.$, f&l (r) eSlc (2*1) 

qti (p, *) = ,j!= Qka (p) eipJI 

Consequently, by applying addition formulas for cylinder functions, we represented (1.1) 
as a system of the form 

Let us introduce the function X, (U, ok, a), defined by regularity conditions in the 
lower half-plane, by the absence of zeros there, and by the behavior 

ir/& (u, a, aP1,(s) (ua) --t 1 
I/&s (u, a, o)J, (ua) -+ 1 

Lrn U,d _ o. (2.4) 

Lemma, The solution pwp (r} of the system (2.1) have representations of the form 
OD 

qRp (r) = 5 JP (v) K-l (71) Fkp (rl) rldq + 5 JP (@ K-l (u)Z(k, P, u) du (2.5) 

Here 2 (k PP U) 
PI 

are regular functions decreasing in the lower half-plane, 
In addition, ttie representation 

#m (r) = i &P (3 rl& (qr9 drl (2*6) 

is taken. 
0 

The function Firp (q) is selected in such a way that it vanishes at real zeros of the func- 
tion K (q). 

We show that such a representation is always easily constructed. 

kt Zmr m = 1, 2, . . ., n denote real zeros of the function K (g). We construct 
the following continuation fig (r) of the function frs (r) 

fw* (2) = fkp (r)‘), O<r<a ==% 

fkP* b) = ckPmrqp3 am;br<Q(m+%) 

ficp* (r) = 0, T->u~ 
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The Bessel transformation of the function fW* will indeed be one of the values of Fkp(q) 
if the constants ckprn are selected from the condition Fkp (2,) = 0. 

It is hence clear that a nondenumerable set of representations (2.6) can be constructed: 

the continuation fkp* (r) with continuous derivatives of the order needed must be con- 
structed to obtain the rapidly decreasing functions FKp (q) . 

The derivation of (2.5) is based on the continuation of the right sides of (2.2) into the 
domain r > al and F > U2, respectively, with subsequent solution of the system, con- 

sidered on a half-axis, by using the Bessel transform. 

Now, let us insert (2.5) into the system (2.2) and let us integrate.Then by using known 
addition formulas for Bessel functions we arrive at the following system to determine 

the unknowns ZkS,,, : 

(2.7) 

Here 
Q (a, U, a, p) = uaH,‘B!, (au)Jp (uu) - uuH*@) (au)Jp,l (ua) 

E (a, u, a, p, s) = [--u~J,+~ (aa)J, (uu) + uuJ, (au) J,+l (ua)lHi$, (ab) 

The contour ri is located near the lower boundary of the domain S in which the 
function K (U) is regular. Having determined the unknowns Z (k, p, u) from thesys- 

tern (2.7). we find the solution of the problem. 

3. To reduce the system (2.7) to equations of the second kind, let us study the pro- 

perties of the solution of an equation of the form 

i K, (u) X (u) dudu 
XT .@ - au - 4 K+ (~1 

= - Y(z) 
rs I% 

(3.1) 

Here the contour r2 is located in the domain of regularity of the function K (u) above 
the contour r,,while z is located above the contour l?a. The function X (z) is regular 
in the domain S and decreases according to a power law there. As is easy-to see, the 

properties of the function K (u) assure a behavior in the regularity domain, described 
by the estimate cu-q* [I + 0 (1)l 1 UI-DOO 

for K, (u) obtained as a result of factorization of K (u) relative to the contour rl, 
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where K, (u) is regular above the contour I’r 
The function Y (z) is regular in the domain S and the upper half-plane, decreases 

according to a power-law there, and admits of analytic continuation in the lower half- 

plane. 
Continuing the left side of (3.1) analytically in the lower half-plane, we have 

1 
XT Y (3.2) 

Here the contours rl, rs arelocated in the domain S,and I’s is above rI, where z 
is between them. The first integral written down is evidently zero ; this follows from the 
fact that the integral with respect to a is zero since the integrand is regular above the 
contour r 3. 

Continuing the function represented by the second integral into the lower half-plane 

and introducing the notation (z is below the contour I’s) 

we have 

s x (u) du 

r, (u - 4 K+ (~1 
= &R_ (2) 

x (4 = Y (4 + K+ (z)R_ (4 (3.3) 

The relationship (3.3) yields a general representation of the solution of (3.1). By using 
this result we complete the transformation of the system (2.7). We perform the follow- 

ing factorization with respect to the contour rI 

Here the radical is defined on a Riemann plane with a slit connecting the points & ip / 
a, and by the condition of positivity for u > 0. The factorization of the function 

K [kk (u)] evidently degenerates into the factorization of the function K (u) as p/a --f 

0. The slit exerts no influence in performance of the factorization because of the regu- 

larity and evenness of the function K (u) on the contour rr. 

We multiply the first and second relationships in (2.7), respectively, by 

UKk+ [h, (a)1 %l ih, @h ‘kt PI 
1, (a) iiLk @) - A, (‘) 1 

(h, (a) = ,h2 - p@), k = ‘9 2 

Here the radical is defined on a Riemann plane with a slit in the upper half-plane con- 

necting the points u = j-p / ak and by the condition h > 0 as u -+ CO. 
We introduce a change of the unknown by setting 

2 (‘k p, n) = % Lhk (d, ak,plX [k, p, A, (U)hhk-’ (u)Kk- [hk (u)] 

Now integrating (2.7) along the contour rs lying above rl in the plane of regularity of 
K (u) we arrive at relationships for which the first becomes 

cm 

X[i,p, hl (u)]aududa= & ,sLZ (-I)“* x 
** m 

E (a, u, as, PI 8) Xl [J+l (a)* al. PI x, w2 (ah Q-21 sl K1+ Lb (41 
Iha@) - k(41@2 -uUa) K2+ &aa(U)l~l(V~2(U) 

x 
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The point z is here above the contour rs, while the contour rs is above r,.The second 

relationship, omitted for the sake of brevity, takes an analogous form. 
Using uniform asymptotic estimates of the Bessel functions with large complex argu- 

ments and subscripts in the lower half-plane, we obtain the left side of the relationship 

in the form 1 

ss 
KI, [A, (41 mX 11, P, A1 (~11 du da 

4nz [%(a)-hl(a)l[~,(~)--~(a)l K,, h(u)1 %(u)hlb) 
(3.6) 

rr r1 
Passing to a new complex plane by using the substitution ?L = 3L1 (u), we obtain the al- 
ready studied operator (3.1). 

With this substitution the contours rl, r2 in the h-plane are mapped into certain 

other contours yl, ys which also lie in the lower half-plane and retain their behavior 

at infinity. 
We add and subtract the expression on the left in (3.1 , considered in the h-plane, in 

the left side of the relationship (3.5) in the plane of the complex variable h. Then,using 
the representation (3.3) and inserting it into (3.5), we obtain an equation of the form 

co 

1 4s c 4i+ 
(- 1)sfP K,, (a) D (a, u, ~1. ~2, P, s) Y (2,s , u) 

(a - ~)(a” - us) K,, (u) X 
YI Yl 8=-c‘J 

The second group of equations becomes 

YGP,4 = &- ss K-z+ (a) C (Up Ub % PI Y (2, Pe u) 
(a - ~)(a* - ~2) K,+ (u) 

au aa + (3.3) 

Here 
Yr -it s=--00 

c (a, u7 a17 P) = -x1 (a, a,, Ph2 (u, a,, p)Q Ip1 (a), (3.9) 

I%(47 Ql, PI + (a + 4 

D (a, u, a,, a2, p, s) = --Xl (a, a,, Ph2 (u, a27 s)Np1 (a), 

112 (4, a29 P, 4 &!“a [p1 (a), bl, 

F(k,z,p) =& s D [Pk (a), akl Kk+ (a) XI (‘A ak’ P) 
da 

u-z 

We reduce (3. ‘7) - (3.9) to equations of the second kind with completely continuous ope- 
rators in the space of functions, continuous with weight uh (0 < ?L. < 1) on the contour 
I’, and which vanish at infinity. 

Let us first study the asymptotic behavior of the integrand for large 1 u I, 1 a 1 , p, S 
on contours in the lower half-plane. Using the uniform asymptotic expansions of the 
Bessel functions by setting 
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we have 

(3.10) 

We use the relationship 

Here the contour rk lies above rk_r. The point z is between the contours I’s and I’s. 
All the contours lie in the domain S. The function <f> (a, u) is regular in both varia- 

bles in this domain, and decreases as 1 u 1-17, (5 > 0 in each variable on the contours. 

Now taking the integrand of the first terms in the right side of (3.7) as CD (a, U) in 

(3. ll), we note that the term outside the integral is proportional to y (1, p, z). Let us 
transfer it into the left side of (3.7) and combine it with the unknown y (I, p, zf there. 

The term outside the integral drops out because of an analogous transformation of the 
second term (sum) in (3.7). 

Solving the transformed equation (3.7) for y (1, p, z) and substituting its untrans- 
formed value in the transformed equation (3.71, we arrive at an equation of the second 

kind on the contour rd. 
Spaces of functrons and sequences with weight are introduced for a further study of the 

systems. 
Let C (h) be the space of functions f (z) which are continuous and vanish at infinity 

with the weight zh, and let c (6) be the space of sequences bounded and vanishing at 
infinity with weight pa, The norms in the mentioned spaces are given by the relation- 

ships 
(3.12) 

For the sake of simplicity, let us assume that the functions fk (r, (p> are infinitely, 

differentiable with respect to each parameter in !&. In this case the representation 
(2.6), in which Pm (TI) decreases in p andq more rapidly than any power, can be obtained 

by continuing fk (r, cp) smoothly outside !& . 
Considering the system (3.6), (3.7) in the space 

y (k, p, z) E c (a) x C (A) (a> m > 2, 0 < h < 1, k = 1,2) (3.W 

(the Cartesian product of the spaces c (CT) by p and C (hf by 8) and using uniform asymp- 
totic estimates of the Bessel functions [3J, which are also valid on the contour rp in the 
complex plane, we can prove the complete continuity of the operator in the right side 
of the transformed equations in this space. Now introducing y (k, p, z) from the space 

(3.13) into (Z&4), (2.5), and taking account of (‘2. l), it is easy to see that 4k (PI ‘P) 
belongs to L, (S’&)‘, (a> 1) , i, e. the class of uniqueness. Hence, uniqueness and there- 
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fore, solvability of the system follow. The exact solution of the system (3.6),(3. ‘l),which 
converges for all values of the parameters, can be written as a ” Fredholm series’ by using 
procedures of exterior analysis [4]. 

4. To construct an approximate solution of the problem, let us note that the infinite 
series in (3.7), (3.8) converge rapidly. Hence, they can be truncated by keeping N terms. 

The subsequent solution of the system of linear integral equations obtained by using ap- 
proximate factorization can be reduced to solving an infinite linear algebraic system 

[l]. The matrix of the infinite system hence has only nonzero diagonal elements and 

column elements. Inverse matrices to those described are constructed easily [5]. 

Another approximate method consists of truncating the series (2.1) by the condition 

fkr (7’) = 41m (r) = 0, k = 1, 2 (4.1) 

r=+(L+l), k(L$_2), . . . . n =+ (Iv + I), + (N + 2), * * * _ 

Consequently, the quantity of equations and unknowns in (3.7), (3.8) turns out to be *IV-!- 
2. The solution of this system can be obtained by using a Fredholm series or by con- 

structing its approximate value by the method in [6]. 

6, Let us elucidate the subsequent scheme for solving the problem in the case of the 
vibration of two rigid plane stamps of radii and masses a,, m, and us, ms ) respectively, 

on a laminar medium under the effect of forces Ple-i@t and P2e-i”f. 
We shall be interested in the vibration of the stamps relative to the static equilibrium 

position. The displacements of the described stamps have the following values in com- 
plex form (without the time factor) 

11 (r, 9) = cr f csR+’ + C4Fei’, f2 (F, Cp) = c2 •t Cg%?“e” + C,f,?+* (5.1) 

Here the constants cl, c2 characterize the vertical displacements of the stamps while 

the ck(k=3, . . .,6) are linearly related to the angles of their rotation relative to 
the horizontal axes. All the constants listed should be determined. Using condition(4.1) 

for N = L = 1 and solving (3.7), (3.8) approximately, we find 

4n PI 9) = & QI,k (r, cp) (n -1.2) (5.2) 

Let Jkl and Jt2 be the moments of inertia of the stamps relative to the x- and y- 
axes on the undeformed surface. Then we represent the equations of motion of thestamps 

in the form 
r?&ck = i Pr& - Pk, k =1,2 (5.3) 

s=1 

Here the sums on the left are the angles of rotation of the stamps relative to the x - and 
y-axes @ = 2), and in addition 

pki = 15 qks (ft (i’P) r dr dq 

ak 
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where Mkp is the moment of the force PI, relative to the s-axis (p = 1) OI y-axis 
(p = 2). All th e constants ck are determined from the system (5.3). 

N o t e l.An investigation by the method from [l] turns out to be effective with theuse 
of approximate factorization of the function K [pk (u)]. In the presence of branchpoints 
Ah of degree ‘1s on the real axis, where K vanishes (half-space) or becomes infinite, 
the approximating function should contain a factor or divisor of the form 

((a” - ARs) W - (A& -I- ie)sl)*‘*, 0 <e 4 1 

This method permits making the integral over the slit -Ak, -Ah - is smallforsmall 
e , which is naturally obtained in (3.7), (3.8) for deformation of the contours Pk in the 
lower half-plane, If the value of K at the branch points differs from zero and infinity, 
then such branch points are considered nonsingular. 

Note 2. The method elucidated is developed for the case of any finite number of 
stamps, where the case of two is presented here for the sake of brevity, The branch points 
of the function K (u) occur in the presence of an elastic half-space on which the elastic 
layers rest, The method is also applicable in the case of an absolutely rigid half-space 
or in its absence (packet of layers). In this case K (14 is a meromorphic function. 
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